New research has uncovered what may be the oldest direct evidence of ancient hot water activity on Mars, revealing the planet may have been habitable at some point in its past. New Curtin University-led research has uncovered what may be the oldest direct evidence of ancient hot water activity on Mars, revealing the planet may
New research may make it possible to keep electronic devices powered with another piece of equipment you're likely to bring with you while exploring the great outdoors: camping stoves. The work focuses on using the excess heat produced by stoves to create a thermoacoustic engine, which converts thermal energy into acoustic energy. This acoustic energy
New research has uncovered what may be the oldest direct evidence of ancient hot water activity on Mars, revealing the planet may have been habitable at some point in its past. New Curtin University-led research has uncovered what may be the oldest direct evidence of ancient hot water activity on Mars, revealing the planet may
New research has uncovered what may be the oldest direct evidence of ancient hot water activity on Mars, revealing the planet may have been habitable at some point in its past. New Curtin University-led research has uncovered what may be the oldest direct evidence of ancient hot water activity on Mars, revealing the planet may
Scientists have presented results on the acoustic characteristics of a physical model of the Parasaurolophus' crest. They created a physical setup made of tubes to represent a mathematical model that will allow researchers to discover what was happening acoustically inside the crest. The physical model, inspired by resonance chambers, was suspended by cotton threads and
New research may make it possible to keep electronic devices powered with another piece of equipment you're likely to bring with you while exploring the great outdoors: camping stoves. The work focuses on using the excess heat produced by stoves to create a thermoacoustic engine, which converts thermal energy into acoustic energy. This acoustic energy
Enough landmines are buried underground worldwide to circle Earth twice at the equator, but the identification and removal of these explosives is costly and time-consuming. New research could help solve the problem. Enough landmines are buried underground worldwide to circle Earth twice at the equator, but the identification and removal of these explosives is costly
Microplastics have been steadily increasing in freshwater environments for decades and are directly tied to rising global plastic production since the 1950s, according to a new study by an interdisciplinary team. The findings provide insight into how microplastics move and spread in freshwater environments, which could be important for creating long-term solutions to reduce pollution
A new method for determining causality gives scientists a more holistic view of the causal role that contributing factors play within just about any system. Cause and effect. We understand this concept from an early age. Tug on a pull toy's string, and the toy follows. Naturally, things get much more complicated as a system
Despite ongoing efforts to curb CO2 emissions with electric and hybrid vehicles, other forms of transportation remain significant contributors of greenhouse gases. To address this issue, old technologies are being revamped to make them greener, such as the reintroduction of sailing vessels in shipping and new uses for hydrogen in aviation. Now, researchers have used
The new research shows that using generative artificial intelligence such as ChatGPT and Google's Gemini could improve city planning by enhancing access to tools that help measure walkability, safety, lighting, and more. Traditional city planning methods require significant technical expertise and manual work. A Virginia Tech researcher is working to change that. New research shows
Researchers have come up with a way to turn silicon into a direct bandgap semiconductor, opening the door to the manufacture of ultrathin silicon solar cells. By creating a new way for light and matter to interact, researchers at the University of California, Irvine have enabled the manufacturing of ultrathin silicon solar cells that could
A team of researchers has developed a printing technique capable of forming a periodic nano/microstructure on the surface of a polydimethylsiloxane (PDMS) slab and easily transferring it onto the surface of a glass substrate. This technique enables us to create materials with useful functions -- including water-repellency and the ability to generate structural colors --
Takeout containers get your favorite noodles from the restaurant to your dining table (or couch) without incident, but they are nearly impossible to recycle if they are made from foil-lined plastics. Research suggests that replacing the plastic layer with paper could create a more sustainable packaging material. The researchers used mechanical demonstrations and computer simulations
The next step for fully integrated textile-based electronics to make their way from the lab to the wardrobe is figuring out how to power the garment gizmos without unfashionably toting around a solid battery. Researchers have taken a new approach to the challenge by building a full textile energy grid that can be wirelessly charged.
According to Bredt's rule, double bonds cannot exist at certain positions on organic molecules if the molecule's geometry deviates too far from what we learn in textbooks. This rule has constrained chemists for a century. Chemists have now shown how to make molecules that violate Bredt's rule, allowing chemists to find practical ways to make
A research team developed a new paradigm for the control of quantum emitters, providing a new method for modulating and encoding quantum photonic information on a single photon light stream. A U.S. Naval Research Laboratory (NRL) multi-disciplinary team developed a new paradigm for the control of quantum emitters, providing a new method for modulating and
Researchers overcame the tradeoff between plastic toughness and degradability by developing plastics with movable crosslinks. The crosslinks both increased toughness by over eight times and increased enzymatic degradability by over twenty times compared with those of a reference plastic without movable crosslinks. These advanced biodegradable plastics bring us one step closer to achieving a resource-circulating