New research has uncovered what may be the oldest direct evidence of ancient hot water activity on Mars, revealing the planet may have been habitable at some point in its past. New Curtin University-led research has uncovered what may be the oldest direct evidence of ancient hot water activity on Mars, revealing the planet may
New research may make it possible to keep electronic devices powered with another piece of equipment you're likely to bring with you while exploring the great outdoors: camping stoves. The work focuses on using the excess heat produced by stoves to create a thermoacoustic engine, which converts thermal energy into acoustic energy. This acoustic energy
New research has uncovered what may be the oldest direct evidence of ancient hot water activity on Mars, revealing the planet may have been habitable at some point in its past. New Curtin University-led research has uncovered what may be the oldest direct evidence of ancient hot water activity on Mars, revealing the planet may
New research has uncovered what may be the oldest direct evidence of ancient hot water activity on Mars, revealing the planet may have been habitable at some point in its past. New Curtin University-led research has uncovered what may be the oldest direct evidence of ancient hot water activity on Mars, revealing the planet may
Scientists have presented results on the acoustic characteristics of a physical model of the Parasaurolophus' crest. They created a physical setup made of tubes to represent a mathematical model that will allow researchers to discover what was happening acoustically inside the crest. The physical model, inspired by resonance chambers, was suspended by cotton threads and
New research may make it possible to keep electronic devices powered with another piece of equipment you're likely to bring with you while exploring the great outdoors: camping stoves. The work focuses on using the excess heat produced by stoves to create a thermoacoustic engine, which converts thermal energy into acoustic energy. This acoustic energy
Astronomers have identified three ultra-massive galaxies -- nearly as massive as the Milky Way -- already in place within the first billion years after the Big Bang. This surprising discovery was made possible by the James Webb Space Telescope's FRESCO program, which uses the NIRCam/grism spectrograph to measure accurate distances and stellar masses of galaxies.
Scientists using observations from NASA's Neil Gehrels Swift Observatory have discovered, for the first time, the signal from a pair of monster black holes disrupting a cloud of gas in the center of a galaxy. Scientists using observations from NASA's Neil Gehrels Swift Observatory have discovered, for the first time, the signal from a pair
The chances of intelligent life emerging in our Universe -- and in any hypothetical ones beyond it -- can be estimated by a new theoretical model which has echoes of the famous Drake Equation. This was the formula that American astronomer Dr Frank Drake came up with in the 1960s to calculate the number of
Few questions have captivated humankind more than the origin of life on Earth. How did the first living cells come to exist? How did these early protocells develop the structural membranes necessary for cells to thrive and assemble into complex organisms? New research has uncovered a plausible explanation involving the reaction between two simple molecules.
A new study has uncovered important behavior in the flow of electric current through quantum superconductors, potentially advancing the development of future technologies like quantum computing. A new study has uncovered important behavior in the flow of electric current through superconductors, potentially advancing the development of future technologies for controlled quantum information processing. The study
Global carbon emissions from fossil fuels have reached a record high in 2024, according to new research. Global carbon emissions from fossil fuels have reached a record high in 2024, according to new research by the Global Carbon Project science team. The 2024 Global Carbon Budget projects fossil carbon dioxide (CO 2 ) emissions of
An international research team has for the first time designed realistic photonic time crystals ---- exotic materials that exponentially amplify light. The breakthrough opens up exciting possibilities across fields such as communication, imaging and sensing by laying the foundations for faster and more compact lasers, sensors and other optical devices. An international research team has
An interdisciplinary team of researchers has developed a machine learning framework that uses limited water quality samples to predict which inorganic pollutants are likely to be present in a groundwater supply. The new tool allows regulators and public health authorities to prioritize specific aquifers for water quality testing. An interdisciplinary team of researchers has developed
Using data from historic ship measurements and Argo floats, researchers introduced a machine learning technique that improves assessment and analysis of the ocean's declining oxygen levels. Oxygen is essential for living organisms, particularly multicellular life, to metabolize organic matter and energize all life activities. About half of the oxygen we breathe comes from terrestrial plant
A team combined compositional data of primitive bodies like Kuiper Belt objects, asteroids and comets with new solar data sets to develop a revised solar composition that potentially reconciles spectroscopy and helioseismology measurements for the first time. Helioseismology probes the Sun's interior by analyzing the waves that travel through it, while spectroscopy reveals the surface
Inside cells, there exists an extensive system of canals known as the endoplasmic reticulum (ER), which consists of membrane-encased tubes that are partially broken down as needed -- for instance in case of a nutrient deficiency. As part of this process, bulges or protrusions form in the membrane, which then pinch off and are recycled
When active filaments are exposed to localized illumination, they accumulate into stable structures along the boundaries of the illuminated area. Based on this fact, researchers developed a model that can be used to simulate the self-organization of thread-like living matter. This model provides important insights for potential technical applications in the formation of structures. When